
https://sites.google.com/site/metodoscombinatorios2015/
Cursillo: The WZ Method and the Evaluation of Integrals
Victor H. Moll
Department of Mathematics
Tulane University,
Estados Unidos.
Contenido: The evaluation of definite integrals, in spite of its classical origin, has still not been reduced to a completely routine algorithm. In this course the author will describe a selection of mathematical problems connected to the evaluation of integrals. These problems connect integrals to Number Theory, Combinatorics and Mathematical Physics.
Victor H. Moll
Department of Mathematics
Tulane University,
Estados Unidos.
Contenido: The evaluation of definite integrals, in spite of its classical origin, has still not been reduced to a completely routine algorithm. In this course the author will describe a selection of mathematical problems connected to the evaluation of integrals. These problems connect integrals to Number Theory, Combinatorics and Mathematical Physics.
The common theme in the problems discussed in the course will be the use of automatic methods of proof. In particular, the WZ-method developed by Wilf and Zeilberger will be explained in detail. This method can be used to generate and solve recurrences in automatic forms. It is a central tool in Experimental Mathematics. Implementations in Mathematica will be show the power of these techniques.
Horario: 4-6 pm
Martes 29 de Septiembre - Salón A401.
Miércoles 30 de Septiembre - Salón A401.
Jueves 1 de Octubre - Salón A404.
Conferencias - Viernes 2 de Octubre - 2:00 pm -- 6:00 pm. Salón: A402.
- (2:00 -- 2:50) An Algebraic Approach to the Number of Some Antichains in the Powerset $2^{\textbf{n}}$
Departamento de Matemáticas,
Universidad Nacional de Colombia.
- (3:00 -- 3:50) Algunas extensiones de los polinomios de poly-Bernoulli.
Departamento de Matemáticas
Universidad Sergio Arboleda.
- (4:00 -- 4:50) Un teorema de incidencia oculto en el estudio de espacios de $n$-particiones.
Departamento de Matemáticas
Universidad de los Andes.
- (5:00 -- 5:50) El método de los "brackets". Un nuevo método de integración.
Department of Mathematics
Tulane University,
Estados Unidos.